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Introduction

The modeling of molecular recognition phenomena within
large biomolecular or material systems often calls for shape
analysis approaches which can match the external surface of
the host structure versus its receptor. The most common
molecular surface representations, which do not involve any
probe element, are based on the well-known van der Waals
(vdW) representation wherein spheres are centred at atom
locations, or on electron iso-density contours. On the other
hand, when interaction concepts with the surroundings need

to be considered, solvent accessible surfaces and molecular
electrostatic potentials are often used.

The matching of two molecular structures may be a tedi-
ous task when accuracy is needed, especially if the method
that is used requires the alignment of both partners through a
succession of translation-rotation movements of three-dimen-
sional properties such as electron density distributions and
molecular electrostatic potential maps. In such a case, a first
guess of the translation-rotation operation is helpful to re-
duce the number of unsuccessful trials. For example, Norel
et al. [1] applied a technique borrowed from the computer
vision discipline, the geometric hashing paradigm, to receptor-
ligand recognition and docking. In their approach, sets of
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three atoms are selected from the ligand structure and matched
against similar sets defined for the receptor. When distance
constraints are satisfied, the triangles are stored in a so-called
hash table. The storage address is computed from the lengths
of sides of the triangles. The authors also compared their
approach to several other geometrically-based methods ap-
plied to molecular docking.

The need of an alignment procedure can actually be over-
come by avoiding an explicit reference to atom or grid posi-
tions, and by a reduction of the number of representation
data. These two aspects are prominent in topology-based
approaches. In this sense, major achievements were carried
out by Mezey in the particular fields of molecular shape char-
acterization and molecular similarity. Within his Shape Group
Method (SGM), various surface representations such as vdW
surfaces, molecular iso-density contours (MIDCO), molecu-
lar electrostatic potential (MEP) iso-contours, or even mo-
lecular orbitals (MO) can be described using tools of topol-
ogy [2]. The local curvature properties of such contours are
characterized by the eigenvalues of two by two Hessian ma-
trices H(r ) defined at each point r on the contour surface
within local tangent planes. Points with zero, one, and two
negative eigenvalues of H(r ) belong to domains that are lo-
cally concave, of the saddle type, and convex, respectively.
A molecular surface is thus partitioned into domains whose
specific arrangement is described in terms of homology
groups characterized by their ranks, or Betti numbers [3].
The Betti numbers are topological invariants and may thus
serve as a basis for comparing shapes of different molecules
[4].

Domain decomposition of Connolly surfaces in terms of
convex, saddle-shaped, and concave faces, were also carried
out by Lin et al. [5]. In their method, the authors reduce each
face of the solvent accessible surface in terms of a critical
point. The resulting representation consists of a limited
number of points disposed at key locations on the surface.
Topological representations are therefore independent of the
geometrical parameters such as atom locations, bond distances
and angles.

Another aspect of the topological approaches relies in
the three-dimensional analysis of electron density (ED) dis-
tributions and molecular electrostatic potential (MEP) maps.
According to Bader [6], the topological properties of ED sca-
lar fields can conveniently be summarized in terms of the
number and kind of their critical points, i.e., points where
the gradient of the density is equal to zero. Each critical point
can be identified by its corresponding three by three Hessian
matrix H(r ) which is built on the local second derivatives of
the ED function. In Bader’s theory of atoms in molecules
(AIM), each atom is associated with an attractor and its ba-
sin bounded by a zero-flux surface over which many atomic
properties can be integrated. This yields a unique partition-
ing of a total system into a set of bounded spatial regions.
The critical points are then linked through a gradient vector

field analysis to generate a graph whose vertices and edges
are critical points and gradient trajectories, respectively.

Similarily to Bader’s approach, C.K. Johnson [7] devel-
oped a critical point analysis method, based on Morse theory,
for the location, identification, and connection of critical point
trees within experimental protein electron density maps. His
method was aimed at the automated interpretation of X-ray
diffraction data for protein structures. In a related philoso-
phy of working, Greer [8] designed a skeletonization approach
for the visual interpretation of protein ED maps. His approach
is now implemented in the well-known FRODO and O pro-
grams [9]. Because the interpretation of protein maps may
still be a tedious task, which requires much expertise and
visual manipulation, we have chosen to pursue Johnson’s
work, in the frame of the Molecular Scene Analysis (MSA)
project, to integrate his method in an automated approach
for the resolution of protein electron density maps [10-12].

MEP functions have also been the subject of topological
analysis studies [13-14]. As, by definition, critical points
correspond to points where the gradient of the electrostatic
potential vanishes ∇∇∇∇∇V = 0, they also correspond to locations
where the electrostatic field is exactly zero. In a brute force
approach, the locations and connections of extrema in MEP
were carried out by Willett and coworkers [15-16] in order to
generate the so-called field-graphs. In their approach, grid
points with MEP values ranging below or beyond given cut-
off values are merged into single points which are further
connected depending upon their closeness. Such graph rep-
resentations facilitate the alignment of MEP fields during a
similarity-search procedure through a maximal common
subgraph isomorphism algorithm. This is particularly impor-
tant for the similarity searching in large data bank where
speed and efficiency are always simultaneously required.

Finally, regardless of topological analysis methods, other
approaches have been used to simplify the representation of
3D maps and consequently increase the speed of docking
algorithms. Several authors developed a procedure to fit
Gaussian functions to MEP [17] and ED functions [18-21]
and, by that way, increase the speed of shape similarity evalu-
ation through the use of the Carbo similarity index [17-19,
21-22].

In the present paper, we describe a topological analysis
method based on the ORCRIT approach [7] for applications
to critical point analysis of zeolite electron density maps at
medium resolution. A numerical procedure is derived for the
shape reconstruction of zeolitic frameworks, and the evalua-
tion of pseudo-interaction energy values between the frame-
work and a probe molecule. In the next section, we present
all mathematical aspects related to the critical point analysis
and the pseudo-interaction energy determination. Applica-
tions to ferrierite- and mordenite-type frameworks interact-
ing with probes of different sizes are then presented, and
first comparisons are carried out with conventional energy
calculations [23].
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Methodology

In this section, the critical point analysis approach as imple-
mented in ORCRIT [7] is presented. It more particularly
shows how critical points are defined and connected to gen-
erate graph representations and shape reconstructions.

Critical point analysis

An electron density (ED) distribution ρ(r ) can be described
in terms of the location and identification of its critical points,
i.e., points where the gradient (∇∇∇∇∇) of the density is equal to
zero. They are thus characterized as maxima, minima, or sad-
dle points depending upon the sign of the second derivatives
of ρ(r ). The Hessian matrix (H) of a continuous 3D function
such as the ED is built from its second derivatives:
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This real and symmetric matrix can be diagonalized. The
three resulting eigenvalues provide informations relative to
the local curvature; the Laplacian, which is the summation
over the three eigenvalues, gives details about the local con-
centration (sign < 0) or depletion (sign > 0) of the electron
density. If the rank (number of non-zero eigenvalues) of the
diagonalized matrix is 3, then four cases are met. The signa-
ture (sum of the sign of the eigenvalues) s = –3 corresponds
to a local maximum or peak, i.e., the electron density func-
tion adopts maximum values along each of the three princi-
pal directions x’, y’, and z’; s = –1 corresponds to a saddle
point or pass where two of the eigenvalues are negative; s =
+1 corresponds to a saddle point or pale characterized by
only one negative eigenvalue, and s = +3 corresponds to a
local minimum or pit, i.e., the electron density function adopts
minimum values along each of the three principal directions.

Morse theory allows to determine whether the set of criti-
cal points is topologically consistent. It is applicable to func-
tions which are everywhere twice differentiable, and wherein
there is no degenerate critical points, i.e., no zero eigenvalues
of the Hessian matrix at the critical point locations. Consid-
ering Mk as the number of critical points with index k of the
function ρ(r ), then [24]:

M3 – M2 + M1 – M0 = 1 (2)

where M3, M2, M1, and M0 stand for the number of peaks,
passes, pales, and pits, respectively.

In the case of crystals, the critical point network is de-
fined not only by the molecular structure but also by the lat-
tice periodicity and the space group symmetry. Due to peri-
odic boundary conditions, a unit cell can be considered as a
3D torus, each pair of opposite faces being connected. This
means that the motif of critical points is not isolated but in-
teracts with its periodic images and, therefore, the number of
critical points is constrained by the relationship:

 M3 – M2 + M1 – M0 = 0 (3)

At atomic resolution, peaks and passes are normally as-
sociated with the presence of atoms and chemical bonds, re-
spectively, while pales and pits occur as a result of the geo-
metrical arrangement of the atoms and the corresponding
networks of bonds. Pales and pits are found in the interior of
rings and cages, respectively [6].

 Our program uses a two-pass approach to detect critical
points in an electron density map. During the first pass, each
grid point whose density value is larger or equal to a selected
minimum value, ρmin, is considered as the central point of a
27 grid point subset, which includes its 26 nearest neigh-
bours. The method looks, in particular, at the electron den-
sity differences between adjacent points and at patterns of
increasing or decreasing electron density values within grid
planes to assess whether the central point might be close to a
peak, a pass, a pale or a pit. When a possible critical point is
found, its coordinates (x, y, z) are estimated using a linear
interpolation procedure. In the second pass, a more refined
procedure is used. It is based on a three-dimensional linear-
blending calculation which uses the numerical density map
stored as a three-dimensional table. In order to find local
critical points, 32 coefficients, i.e., a 3D pattern of 32 adja-
cent density points, are needed [25]. All critical point search
algorithms that were implemented in ORCRIT were kept since
they are well suited for the analysis of a 3D grid. For the
present work, we however modified the ORCRIT program in

Figure 1. 32-point grid pattern for the refinement of critical
point coordinates, density, and eigenvalues.
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order to consider any grid size, and to increase the numerical
precision level.

Figure 1 depicts a subset of 32 connected grid points taken
from a global electron density map. This subset includes the
number of degrees of freedom needed for the three-dimen-
sional polynomial fit as expressed by:
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Equation (4) and its derivatives allow the determination
of the density value at a given point r = (x, y, z), as well as of
its first and second derivatives, i.e., ∇∇∇∇∇ρ(r ) and H(r ). The co-
efficients aijk are determined by considering equation (4) as a
Lagrangian linearly blended interpolation polynomial. The
coordinates of any critical point identified in the first pass
are refined by iteratively applying equation (5) and the equa-
tion:

r new = H–1(r )·∇∇∇∇∇ρ(r ) (5)

The procedure terminates when the difference (r new – r )
is close to a predetermined value, which is set to 0.0005 (in
grid units). Once H has been determined, the eigenvalues
and eigenvectors are obtained by using a QR algorithm [26].
For each individual critical point, the three eigenvectors re-
flect the three main axis of the local electron density func-
tion, along which the eigenvalues are established. The col-
umn arrangement of the three orthonormal eigenvectors in a
three by three matrix representation corresponds to the ac-
tual transformation matrix U needed to diagonalize H ac-
cording to:

H’ (r ) = UT H(r) U (6)

 The characteristics of nearby critical points - types, dis-
tances, density heights, eigenvector projections - are used in
order to derive a weight function for possible connections. In
particular, such a function is used in a graph theoretical ap-
proach for representing the full network of critical points. In
graph theory, a graph is a representation of a finite set of
points (or vertices) and their connectivity, i.e., the correspond-
ing set of edges. In particular, a connected graph consists in
a set of vertices in which any pair may be connected by a
path formed by one or several successive edges in the graph.
Many connected graphs contain rings of points and edges
(circuits). The weight of a connection between two critical
points, wij, as calculated in the original version of ORCRIT,
is inversely proportional to its occurrence probability. The

weight wij of any pair of critical points is computed accord-
ing to the following equation:

 wij = ∆r R F where R =
+

+
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∆r being the distance between the two critical points, |∆ρ|
being the absolute value of the density difference (ρi – ρj),
and F being equal to (3 – F1 – F2), where Fi denotes the
normalized projection of the eigenvector of point i along the
vector ∆r connecting the two critical points. The original
ORCRIT program is coded so as to build minimal spanning
trees (graphs without any closed path) and connections be-
tween critical points of the same kind are accepted. In the
revised version of the program, we first allow for circuits,
and we added a constraint which prevents critical points of
the same type to be connected. Figure 2 represents a cubic
network of critical points, with one peak located at each of
the 8 corners. The 8 Gaussian functions built on these peaks
generate a pass on each of the edges, pales centred on the 6
faces, and one pit located in the centre of this cube. To gen-
erate this figure, a maximal cutoff value for F was set equal
to (3 – cos30° – cos30°).

Shape reconstruction

At the critical point locations, the three main curvatures of
the electron density function are the eigenvalues of the Hes-
sian matrix constructed from the second derivatives. It is as-
sumed that this local information can be transferred to the
space surrounding the critical point concerned; hence it is

Figure 2. Critical point networks ‘peak (red)-pass (yellow)’
and ‘pit (dark blue)-pale (light blue)’ of a cubic arrangement
of three-dimensional Gaussian functions.
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possible to evaluate (or reconstruct) the 3D function in the
close neighbourhood of each point. Each maximum of the
electron density function, i.e., each peak, is considered as
the centre of expansion of a Gaussian function and such a
mathematical expression is fitted in order to define a volume
around each peak taking into account its three characteristic
eigenvalues:

 ( ) ( ) ( )ρ ρ
α

ρr

r H r

= 0
0

e

T '
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where H’  is the diagonalized form of H, and r is defined in a
reference frame built on the three corresponding eigenvectors.
In the frame of ORCRIT, the parameter α is set equal to 2.0.
In order to evaluate the volume associated with a particular
peak, the exponential term of the Gaussian function has been
integrated over the space within the frame of the ellipsoid:
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 which leads to the definition of an ellipsoid characterized
by three main axes rX, rY, and rZ:
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and hence provides a method of representing shape anisotropy
of the critical points. This shape description is extended to a
whole molecule by considering a set of ellipsoids, and a
descriptor for this structure is defined in terms of interaction
energy values. The total interaction energy E between the
host ellipsoids and a probe is expressed within a pseudo-
pair-potential approximation, wherein the dispersive inter-
action between an ellipsoid i and a sphere j is proportional to
their volume product:

E Eij
i j
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Figure 3. Crystallographic structure of ferrierite (one unit
cell) retrieved from the MSI Technologies data bank (Si:
yellow, O: red).

Figure 4. Crystallographic structure of mordenite (one unit
cell) retrieved from the MSI Technologies data bank (Si:
yellow, O: red).
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rij  being the separation distance between particles i and j,
and ri and rj, their radii calculated along the interdistance
vector i-j. In such a formula, it is considered that the equilib-
rium distance between i and j is given by 21/6(ri + rj) and Eij =
0 when rij = (ri + rj). The idea of using a pseudo-potential
energy function in order to determine the optimal steric lo-
cation of a guest molecule was also developed by Kuntz and
coworkers [27-29] in the program DOCK. These authors sim-
plified the overlap energy between two molecules to a con-
tribution depending upon the vdW radii of the interacting
atoms and their separation distance. However, considering a
Lennard-Jones type potential allows us to emphasize the ef-
fect of global curvature of the neighbourhood, e.g., a cavity
leading to more attractive energies.

Fitting Gaussian functions to a higher resolution repre-
sentation, i.e., to atoms, has been done latter by Grant and
Pickup [20] to overcome the limitations of hard sphere rep-
resentations of molecular shapes. From such functions, these
authors were able to derive gradients and Hessian of the nu-

Table 1. Ferrierite (FER) and mordenite (MOR) electron
density map specifications used for topological analyses at 3
Å resolution.

FER MOR

Unit cell parameters 19.156 18.094

(Å and degrees) 14.127 20.516

7.489 7.524

90.00 90.00

90.00 90.00

90.00 90.00

Space group Immm Cmc21

Channel system 10-T [001] 12-T [001]

8-T [010] 8-T [010]

Unit cell content Si36O72 Si48O96

Grid intervals (Å) 0.171 0.162

0.126 0.183

0.117 0.118

Table 2. Critical point properties (electron density ρ, eigen-
values h, and distance versus the atom position d(cp-at)) of
the ferrierite electron density map at 3 Å resolution.

ρρρρρ h d(cp-at)

(e–/Å3) (e–/gu2·Å3) [a] (Å)

T1 3.30 -0.018 -0.016 -0.013 0.02

T2 2.77 -0.019 -0.010 -0.008 0.27

T3 3.11 -0.020 -0.014 -0.009 0.32

T4 2.99 -0.017 -0.015 -0.008 0.16

O1 1.60 -0.012 -0.007 0.014 0.08

O2 2.22 -0.012 -0.007 0.014 0.30

O3 1.77 -0.024 -0.016 0.008 0.30

O4 1.78 -0.016 -0.012 0.015 0.36

O5 2.22 -0.023 -0.012 0.011 0.00

O6 2.04 -0.021 -0.010 0.011 0.33

O7 2.13 -0.022 -0.011 0.009 0.26

O8 2.09 -0.023 -0.015 0.007 0.22

[a] gu = "grid unit", i.e., grid interval.

Table 3. Critical point properties (electron density ρ, eigen-
values h, and distance versus the atom position d(cp-at)) of
the mordenite electron density map at 3 Å resolution.

ρρρρρ h d(cp-at)

(e–/Å3) (e–/gu2·Å3) [a] (Å)

T1 2.87 -0.018 -0.015 -0.011 0.09

T2 2.87 -0.018 -0.015 -0.011 0.09

T3 2.92 -0.018 -0.016 -0.012 0.13

T4 2.92 -0.018 -0.016 -0.012 0.13

T5 2.97 -0.020 -0.018 -0.011 0.06

T6 2.89 -0.021 -0.014 -0.011 0.06

O1 2.14 -0.023 -0.018 0.008 0.33

O2 2.14 -0.023 -0.018 0.008 0.33

O3 2.12 -0.020 -0.018 0.009 0.33

O4 2.12 -0.020 -0.018 0.009 0.33

O5 1.94 -0.020 -0.016 0.012 0.23

O6 1.94 -0.019 -0.016 0.012 0.23

O7 2.05 -0.024 -0.016 0.013 0.31

O8 2.28 -0.027 -0.017 0.008 0.29

O9 1.97 -0.026 -0.015 0.011 0.46

O10 2.00 -0.020 -0.013 0.013 0.33

O11 1.90 -0.023 -0.015 0.014 0.12

O12 1.64 -0.015 -0.011 0.013 0.01

O13 1.53 -0.015 -0.012 0.016 0.51

[a] gu = "grid unit", i.e., grid interval.
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clear coordinate derivatives, i.e., properties similar to criti-
cal point characteristics.

Applications to shape analysis of ferrierite and mordenite

In this section, we describe applications of our critical point
analysis program to two zeolitic frameworks, ferrierite and
mordenite. Zeolites are crystalline alumino-silicates charac-
terized by the presence of pores and cavities wherin guest
molecules can diffuse and interact. Consequently, zeolites
and related materials are presently one of the most techno-
logically important classes of inorganic compounds in nu-
merous industrial processes. Examples comprise applications
as catalysts, selective adsorbants, ion exchangers as well as
shape-selective molecular sieves. Confinement is one of their
leading aspects [30-32]. Molecules in zeolites are consid-
ered as solvated by the surrounding framework, which im-
plies favourable interactions between the host network and
the guest molecule. The topology of the zeolite network is
thus deeply involved in confinement effects.

Crystallographic structures of ferrierite (Figure 3) and
mordenite (Figure 4) were retrieved from the MSI Technolo-
gies data bank [33] and used as input to the program XTAL
[34] to generate the corresponding electron density maps
(EDMs). Both ferrierite and mordenite structures are charac-
terized by a network of channels running along the
crystallographic axes c [001] and b [010]. Grid specifica-
tions of the EDMs are reported in Table 1. We selected a
resolution of 3 Å (sinΘ/λ = 0.167) following the work previ-
ously done on the shape complementarity analysis of drug

Figure 5. Framework of critical
points (peaks in blue and passes
in purple), eigenvectors (green
arrows), and iso-electron density
contour (1.7 e–/Å3) obtained from
the topological analysis of the
ferrierite electron density map at
3 Å resolution.  The critical point
linkage is shown using yellow
sticks.

Figure 6. Framework of critical points (peaks in blue and
passes in purple), eigenvectors (green arrows), and iso-
electron density contour (1.7 e–/Å3) obtained from the
topological analysis of the mordenite electron density map
at 3 Å resolution.  The critical point linkage is shown using
yellow sticks.



J. Mol. Model. 1997, 3 163

molecules within confined receptors such as DNA [35] and
β-cyclodextrin [36-37].

In both cases, the unit cell was divided into 112 x 112 x
48 grid points. Since symmetry operations and periodicity
are explicitly taken into account in the topological and shape
analysis programs, calculations were carried out with one
asymmetric unit only. The maximal electron density values
that were obtained are equal to 3.30 and 2.97 e–/Å3 for
ferrierite and mordenite, respectively.

Critical point analysis results

A minimal density cutoff value was set equal to 1.50 e–/Å3 in
order to avoid the generation of peaks and passes originating
from ripples due to the Fast Fourier Transform approxima-
tions when generating EDMs using the program XTAL. Un-
der such conditions, pales and pits cannot be detected, and
we will focus on the analysis of highest density critical points
only.

The application of the critical point analysis method gen-
erated, very interestingly, peaks located at the tetrahedral site
positions, and passes close to the zeolite oxygen atoms (Ta-
bles 2 and 3). Figures 5 and 6 depict the location of the criti-
cal points (peaks in blue and passes in purple) in the electron
density map of ferrierite and mordenite at 3 Å resolution,
respectively. The orientation of their three eigenvectors is
shown using green arrows. It was actually observed that such
a topological behaviour is valid at resolution values ranging
from 2.1 to 3.5 Å. At higher resolutions, peaks tend to ap-
pear at oxygen atom positions, as observed at atomic resolu-
tion, while at lower resolutions, the number of discovered
critical points becomes very low.

Figure 7. Critical points for an
asymmetric motif Si4O8 (peaks in
blue and passes in purple), eigen-
vectors (green arrows), and iso-
electron density contour (1.7 e–/Å3)
obtained from the topological
analysis of the ferrierite electron
density map at 3 Å resolution.  The
results are superimposed onto the
crystallographic structure (yellow
sticks) retrieved from the MSI Tech-
nologies  data bank.

Figure 8. Critical points for an asymmetric motif Si6O13
(peaks in blue and passes in purple), eigenvectors (green
arrows), and iso-electron density contour (1.7 e–/Å3) obtained
from the topological analysis of the mordenite electron density
map at 3 Å resolution.  The results are superimposed onto
the crystallographic structure (yellow sticks) retrieved from
the MSI Technologies  data bank.
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We must point out here that, in our topology-based model,
large size elements (ellipsoids) are centred on the Si atoms.
This is due to the fact that electron density distributions are
computed through a Fourier Transform of calculated struc-
ture factors. These structure factors are built from atomic
scattering factors whose contributions are generated both by
the core and valence electrons. Thus, since Si atoms have a
higher atomic number than O atoms, their scattering power
is increased, and they generate higher density values.

The distances d(cp-at) between the critical points and the
actual atom locations range between 0.02 and 0.51 Å. In gen-
eral, peaks are closer to their respective T-site than passes
are to their corresponding oxygen atom. Passes are located
on a straight line joining their two neighbouring peaks (Fig-
ures 7 and 8), i.e., a path slightly different from the bended
Si-O-Si linkage pattern.

It is also interesting to analyze the 3D orientation of the
ellipsoids, i.e., the direction of the critical point eigenvectors.
For each individual critical point, the three eigenvectors re-
flect the three main axis of the local electron density func-
tion, along which the eigenvalues are established. Matrices
U defined in equation (6) are given in Table 4 for all peaks
found in the electron density maps of both zeolite structures
at 3 Å resolution. It is first observed that the ellipsoid orien-
tation is consistent with the local symmetry of the zeolitic
framework. In the case of ferrierite, the three eigenvectors
associated with site T1 belong to two mirror planes. Indeed,
the analysis of U given in Table 4 shows that the three
eigenvectors have a major component directed along one di-
rection, z (or crystallographic axis c) for the first eigenvector,
x (or a) for the second eigenvector, and y (or b) for the third
eigenvector. Regarding T2 and T3, one eigenvector has its
major component pointing along one specific direction, z
and y, respectively; while the two others lie in a plane per-
pendicular to that direction. Site T4 has no particular orien-
tation. These observations should also be related to the mul-
tiplicity of each of these sites. T1, T2, T3, and T4 have a
multiplicity of 1/4, 1/2, 1/2, and 1, respectively. They are
located at particular crystallographic positions, i.e., on sym-
metry elements. The lower the multiplicity is, the higher the
degree of alignement of the ellipsoid with the crystallographic
axes is. In the case of mordenite, all T-sites have a multiplic-
ity of 1. The orientation of the eigenvectors should thus be
related to their local symmetry only. For example, sites T3
and T4 both have their third eigenvector that is strongly
aligned with z, while the other two eigenvectors are arranged
according to the local bonding pattern (Figure 8). Site T5
which is located in a 8-membered ring perpendicular to the
crystallographic axis c, has one eigenvector along z, and the
two others perpendicular to z. Eigenvectors associated with
the passes, are also arranged according to the local symme-
try and the bonding pattern. When the Si-O-Si bond is linear,
one eigenvector is aligned with the oxygen-silicon bond, and
the two others are consequently perpendicular to that chemi-
cal bond. If the pass is located on a local symmetry element,
e.g., at positions between T1 and T2, or between T5 and T6

Table 4. Peak properties (orthonormal eigenvectors compo-
nents in  gu) of ferrierite and mordenite electron density maps
at 3 Å resolution.

First Second Third

 eigen-  eigen- eigen-

vector vector vector

(gu) [a] (gu) (gu)

Ferrierite

T1 0.137 0.990 0.018

-0.008 -0.017 0.998

0.991 -0.137 0.006

T2 0.987 0.014 -0.160

-0.161 -0.005 -0.987

-0.015 0.999 -0.003

T3 0.723 -0.690 0.008

-0.004 0.008 0.999

-0.690 -0.724 0.003

T4 0.614 -0.734 0.290

0.053 -0.328 -0.943

0.787 0.595 -0.162

Mordenite

T1 0.228 0.391 0.892

-0.946 -0.127 0.298

0.230 -0.911 0.341

T2 -0.229 -0.391 0.892

0.946 0.126 0.298

-0.229 0.912 0.341

T3 0.992 -0.121 -0.029

0.124 0.985 0.118

0.015 -0.121 0.993

T4 0.992 0.122 -0.029

-0.125 -0.985 0.118

-0.014 0.121 0.993

T5 0.997 0.077 0.009

-0.077 0.997 -0.003

-0.009 0.002 1.000

T6 -0.794 0.608 0.020

-0.603 -0.793 -0.015

0.007 -0.024 1.000

[a] gu = "grid unit", i.e., grid interval.
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in mordenite, one of the eigenvector bissects the Si-O-Si an-
gle (Figure 8). The analysis of Tables 3 and 4 shows that
sites T1 and T2, as well as T3 and T4 present the same topo-
logical properties. This can be explained if it is considered
that the space group of mordenite framework is Cmcm, a
higher symmetry group than Cmc21 which is reported in the
MSI database. In such symmetry conditions, T1 and T3 are
equivalent to T2 and T4, respectively.

As shown by equation (7), the eigenvector orientations
are explicitly considered in the calculation of the connection
weights. Connections determined between peaks and passes
of 3 Å resolution EDMs are displayed in Figures 5 and 6 for
ferrierite and mordenite, respectively. They were obtained
by imposing a maximal cutoff value to ∆r (2.5 Å) and F (3 –
cos30° – cos30°). Bond weight distributions that were ob-
tained from the statistical analysis of connections within one
asymmetric unit are described in Table 5. It is first observed
that standard deviation values are an order of magnitude
smaller for R and Fi or j distributions than for wij and ∆r. These
two last distributions are actually composed of two distinct
regions (Figures 9 and 10) whose unique origin comes from
the short- and long-range order of the crystalline zeolitic
frameworks. Indeed, in such cases, it is very easy to choose
maximal cutoff values for ∆r and F because of the disconti-
nuity in their distributions. Second, Fi is not smaller than
0.75 for ferrierite and 0.73 for mordenite. These values cor-
respond to angle values of 41 and 43 degrees. Considering
the selected cutoff value for F, this implies that Fj is equal to
1.00, i.e., there is a perfect alignement of the eigenvector
associated with critical point j with the interdistance vector.

Shape analysis

Starting from equation (10), ellipsoid radii were calculated
for each peak, i.e., for each tetrahedral site. Their values, in
grid units (gu) and in Å, are reported in Table 6. The result-

ing ellipsoid representation is displayed in Figures 11 and 12
which were obtained by displacing a probe (radius = 0. Å)
on a regular grid and evaluating whether it enters (Eij  = 99)
or not (Eij = 0) an ellipsoid. Ellipsoids are visualized using
an iso-energy contour of 90 (arbitrary units). Re-entering each
radius value (in gu) together with its corresponding eigenvalue
h (in e–/gu2 Å3) in equation (8) allowed the evaluation of
surface density value. For ferrierite, ellipsoids T1, T2, T3,
and T4 (Figure 11) are characterized by a surface density
equal to 0.98, 0.83, 0.93, and 0.89 e–/Å3, respectively, while

Figure 9. Frequency distribution of connection weight values
(wij) obtained from the critical point analysis of the mordenite
electron density map at 3 Å resolution.

Figure 10. Frequency distribution of connection lengths (∆r)
obtained from the critical point analysis of the mordenite
electron density map at 3 Å resolution.

Table 5. Description of the connection weight  distributions
wij and their contributions (∆r, R, Fi or j) (see equation 7)
calculated from a critical point analysis of ferrierite and
mordenite electron density maps at 3 Å resolution.

Min. Max. Mean Standard

Deviation

Ferrierite

wij 0.83 1.27 0.98 0.13

∆∆∆∆∆r (Å) 1.45 1.81 1.61 0.10

R 0.50 0.61 0.54 0.03

Fi or j 0.75 1.00 0.94 0.07

Mordenite

wij 0.72 1.26 0.97 0.13

∆∆∆∆∆r (Å) 1.44 1.70 1.58 0.07

R 0.49 0.62 0.53 0.03

Fi or j 0.73 1.00 0.93 0.09
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in the case of mordenite (Figure 12), each individual T-site is
defined by a surface density equal to 0.85, 0.85, 0.87, 0.87,
0.89, and 0.86 e–/Å3. This thus shows that a contour defined
by the set of all ellipsoid surfaces does not correspond to a
unique iso-electron density contour: the ellipsoid surface
density values depend on the peak height. Figures 13 and 14
illustrate the fit between the ellipsoid surfaces and the elec-
tron density contours. Ellipsoid boundaries (red contours) and
iso-electron density surfaces were drawn on a plane crossing
the ferrierite structure at z = c/2 (Figure 13), and mordenite
at z = 0 (Figure 14). From these figures, it is concluded that
the ellipsoid representation is a good first approximation of
the shape of the zeolite structure. It is defined by a reduced
number of parameters, peak heights, and Hessian matrices,
rather than by a three-dimensional grid of points. However,
such a model of a continuous 3D function allows discon-
tinuities (cusps) to appear on the molecular surface. Fortu-
nately, this do not raise any problem when the approxima-
tion model serves as a basis for pseudo- pair-wise interaction
energy calculations. It is interesting at this level to note the
presence of unphysical density maxima, or ripples, in the
centre of the zeolite cavities. They are easily observed in
Figure 13, at the bottom right corner of the iso-contours box.
Thus, modeling the zeolite structure using well-selected el-
lipsoids is a way to avoid the presence of these unphysical
objects in interaction energy evaluations.

Interaction energy calculation

As presented in the Methodology, calculation of pseudo-in-
teraction energy values between the framework and a probe

Figure 11. Ellipsoids built on the
peaks associated with the four tetra-
hedral sites of ferrierite obtained
from the topological analysis of the
3 Å resolution electron density map.
The results are superimposed onto
the crystallographic structure (yel-
low sticks) retrieved from the MSI
Technologies  data bank.  Length of
eigenvectors (green arrows) is set
equal to the respective ellipsoid
radius value.

Figure 12. Ellipsoids built on the peaks associated with the
six tetrahedral sites of mordenite obtained from the topo-
logical analysis of the 3 Å resolution electron density map.
The results are superimposed onto the crystallographic
structure (yellow sticks) retrieved from the MSI Technologies
data bank.  Length of eigenvectors (green arrows) is set equal
to the respective ellipsoid radius value.
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can be achieved through a Lennard-Jones type expression.
We have selected different probe sizes ranging between 1.6
and 2.2 Å; major changes in the potential energy topography
were observed when the probe size was increased from 1.9
to 2.0 Å. Results obtained with these parameters are displayed
in Figures 15-18. T-site multiplicity was considered in order
to avoid multiple energy counts.

Energy results for ferrierite interacting with the smallest
probe (r = 1.9 Å) are presented in Figure 15 as 3-dimen-
sional iso-energy surfaces and 2-dimensional iso-energy con-
tours displayed in plane x = a/2. The figure allows the visu-
alization of the density contours along the 10- (bottom cen-
tral channel) and 8-membered ring channels. Translational
motion is permitted along the channels wherein attractive
energy wells are observed nearby the internal surfaces. Fig-

Figure 13. Ellipsoids surface
contour (E = 90 in arbitrary
units) built on the peaks assoc-
iated with the tetrahedral sites
of ferrierite obtained from the
topological analysis of the 3 Å
resolution electron density map
(iso-electron density contours
are displayed in the plane z = c/
2: 0.8, 0.9, 1.0, 1.5, 2.0, and 2.5
e–/Å3).  The results are superim-
posed onto the crystallographic
structure (yellow sticks) re-
trieved from the MSI Techno-
logies  data bank.  Eigenvectors
are shown using white arrows.

Figure 14. Ellipsoids surface
contour (E = 90 in arbitrary
units) built on the peaks associ-
ated with the tetrahedral sites of
mordenite obtained from the
topological analysis of a 3 Å re-
solution electron density map
(iso-electron density contours are
displayed in the plane z = 0: 0.8,
0.9, 1.0, 1.5, 2.0, 2.5, and 3.0 e–

/Å3).  The results are superimpo-
sed onto the crystallographic
structure (yellow sticks) retrieved
from the MSI Technologies  data
bank. Eigenvectors are shown
using white arrows.
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ure 15 also shows that translational motion of the probe across
6-membered windows is feasible only through an energy
barrier of about 1 (in arbitrary units). It was also observed
that this barrier appears for probes with a radius larger than
1.6 Å. The centre of cavities sandwiched between two facing
6-membered rings does not correspond to a potential energy

well (bottom left and right of Figure 15) and the probe seems
to be preferentially physisorbed close to the cavity internal
walls.

Similar representations for the larger probe (r = 2.0 Å)
interacting with ferrierite are shown in Figure 16. Transla-
tion along 10-T channels is still possible (bottom central chan-
nel), but is now observed that iso-contours of potential en-
ergy wells are located in the centre of this kind of channels,
rather than along the walls. In this context, the large probe is
viewed as a ‘floating’ atom while the small one adopts the
behaviour of a ‘creeping’ atom [38]. A creeping-like charac-
ter still appears in cavities limited by two 6-T windows (bot-
tom left and right of Figure 16).

Mordenite-probe iso-energy contours are shown in Fig-
ures 17 and 18 in planes x = 0 (left plane) and x = a/2 (right
plane). Both probes (r = 1.9 and 2.0 Å) have a rather floating
behaviour along the main 12-T channels (centre of plane x =
a/2). However, due to confinement effects, more attractive
energies are observed inside the lateral pockets linking the
12-T channels together. Translation along these pockets is
energetically feasible for the smallest probe through a zig-
zag path (Figure 17) while it is forbidden for the largest one
(Figure 18). These results are perfectly compatible with pre-
vious conventional molecular mechanics calculations [23]
that were carried out for Ne (critical radius = 1.6 Å) and Xe
(critical radius = 2.185 Å) in mordenite using a Lennard-
Jones type potential. However, these comparisons must be
considered with caution since our probes should be seen as
the result of a critical point analysis of a 3 Å electron density
map.

Table 6 Peak properties (radii) of ferrierite and mordenite
electron density maps at 3 Å resolution.

r1 r2 r3

[gu] (Å) [gu] (Å) [gu] (Å)

Ferrierite
T1 [10.55] (1.65) [10.96] (1.87) [12.49] (1.58)

T2 [9.41] (1.60) [12.80] (2.00) [14.57] (1.86)

T3 [9.74] (1.60) [11.65] (1.90) [14.15] (1.79)

T4 [10.35] (1.67) [11.05] (1.78) [14.54] (1.91)

Mordenite
T1 [9.74] (1.76) [10.65] (1.68) [12.23] (1.99)

T2 [9.73] (1.76) [10.65] (1.68) [12.23] (1.99)

T3 [9.79] (1.58) [10.43] (1.90) [12.26] (1.93)

T4 [9.79] (1.59) [10.43] (1.90) [12.27] (1.93)

T5 [9.38] (1.52) [9.84] (1.80) [12.58] (1.97)

T6 [9.06] (1.54) [11.27] (1.98) [12.48] (1.96)

Figure 15. Ferrierite-probe (r =
1.9 Å) interaction energy iso-
contours (from -3.0 to 0.0, step =
0.5 in arbitrary units) calculated
from a critical point representa-
tion obtained from the topologi-
cal analysis of an electron density
map at 3 Å resolution.  2D iso-
energy contours are displayed in
plane x = a/2. The results are
superimposed onto the crystallo-
graphic structure (yellow sticks)
retrieved from the MSI Techno-
logies  data bank.
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Conclusions

We have presented a critical point analysis method derived
from the initially implemented code by C.K. Johnson. It was
applied to shape analysis of ferrierite and mordenite electron
density maps at 3 Å resolution. It was observed that the 3D
crystalline arrangement of silicon and oxygen atoms gener-
ated peaks on the tetrahedral sites, and passes very close to

the oxygen atoms. The linkage between these critical points
was determined through the calculation of connection weights
whose range of acceptable values is easily defined due to the
short- and long-range order of the crystalline structures. Con-
sequently, a zeolite structure can be fully reconstructed from
the topological analysis of its medium resolution electron
density maps. We have also shown that fitting ellipsoids on
each local density maximum (peaks) allowed to reconstruct

Figure 16. Ferrierite-probe (r = 2 Å)
interaction energy iso-contours (from
–3.5 to 0.0, step = 0.5 in arbitrary
units) calculated from a critical point
representation obtained from the
topological analysis of an electron
density map at 3 Å resolution.  2D
iso-energy con-tours are displayed in
planex = a/2. The results are
superimposed onto the crystallo-
graphic structure (yellow sticks)
retrieved from the MSI Technologies
data bank.

Figure 17. Mordenite-probe (r = 1.9
Å) interaction energy iso-contours
(from –1.0 to 0.0, step = 0.2, and -0.7
in arbitrary units) displayed in planes
x = 0 (left plane) and x = a/2 (right
plane), calculated from a critical
point representation obtained from
the topological analysis of an
electron density map at 3 Å
resolution. The results are super-
imposed onto the crystallographic
structure (yellow sticks) retrieved
from the MSI Technologies  data
bank.
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the zeolite shape and to evaluate steric interaction energies
between the framework and a spherical probe.

The work that is presented assesses the potentialities of a
critical point analysis method in the field of shape analysis
at medium resolution. Besides very important advantages, it
has shown some limitations, but also new potential applica-
tions. Advantages consist in the simplification of 3D elec-
tron density (ED) grids into graphs composed of a limited
number of critical points and their properties (density value
and eigenvalues). These properties allow the local reconstruc-
tion of the anisotropic ED distribution through ellipsoid as-
signment to peaks. The evaluation of steric interaction ener-
gies with a molecular probe can consequently be performed.
To those advantages correspond some limitations. Due to el-
lipsoid reconstruction, the smoothness of ED maps is lost
and energies are given in arbitrary units. Regarding this sec-
ond consequence, we are trying to determine how contribu-
tions such as electrostatic energies could be added to the steric
interaction potential that was obtained in the present work.
However, new applications of our method can already be
considered, especially regarding the evaluation of steric in-
teraction energies. Rather than probing an empty framework
with a spherical element, it would be very interesting to gen-
erate an ED map of the zeolite already interacting with a
molecule, and to determine how its topological representa-
tion is affected by the interacting molecule.

In summary, this work reports our very first attempts to
apply a new method to the evaluation of interactions between
small molecules in highly confined environments. It is clear
that conventional interaction potentials (Lennard-Jones) pro-
vide quantitative energy results; hence their large use in
molecular modeling and molecular simulation methods. With

respect to these classical approaches, our method presents a
major difference: the number of elements to be considered
to model the zeolitic framework is reduced (the number of
peaks is lower than the number of atoms) but the shape (ori-
entation) of these elements, which is related to their environ-
ment, is considered. We expect this shape component to be a
variable depending upon the chemical nature of the zeolite
and the guest molecule, since it is derived from electron den-
sity properties. Further calculations will be carried out to
verify how topological properties are affected by the nature
of the sorbed molecule and by a change in the chemical com-
position of the framework, e.g., acidic sites. We expect that
our approach is able to complete the representation of zeo-
lite structures in databases, by associating new descriptive
parameters with their basic tetrahedral sites. We also wish to
carry out topological analyses of the generated 3D potential
energy map in order to predict the size and orientation of
possible guest molecules within the zeolitic framework.
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Figure 18. Mordenite-probe (r = 2
Å) interaction energy iso-contours
(from –1.2 to 0.0, step = 0.2, and -0.7
in arbitrary units) displayed in
planes x = 0 (left plane) and x = a/2
(right plane), calculated from a
critical point representation obtained
from the topological analysis of an
electron density map at 3 Å resolu-
tion.  The results are superimposed
onto the crystallographic structure
(yellow sticks) retrieved from the MSI
Technologies  data bank.
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